外為オプションとは

フィボナッチ数列 (読み)ふぃぼなっちすうれつ

フィボナッチ数列 (読み)ふぃぼなっちすうれつ
【負けた場合】
負けた数字を書き足します。1・2・3・4となり、再び一番右と左端を足した金額を賭けます。この場合は1+4 = 5ということになります。

フィボナッチ数列の一般項

式(1)に関しては、$\boldsymbol-\alpha F_n\>>$ をまるごと1つの数列だと考えると、この数列は公比 $\beta$ フィボナッチ数列 (読み)ふぃぼなっちすうれつ の等比数列になっていることがわかります。
初項は、$n=1$ とすると
$$ \begin F_2-\alpha F_1 &=& 1- \frac> \cdot 1\\
&=& \frac>\\
&=& \beta \end $$となります。
つまり数列 $\-\alpha F_n\>$ は初項も公比も $\beta$ だったというわけですね。よって、
$$ F_-\alpha F_n = \beta ^n フィボナッチ数列 (読み)ふぃぼなっちすうれつ \tag $$となります。

同様に、式(2)についても見ていきましょう。こちらも $\boldsymbol-\beta F_n\>>$ をまるごと1つの数列だと考えると、この数列は公比 $\alpha$ の等比数列になっていることがわかります。
初項は、$n=1$ とすると
$$ \begin F_2-\beta F_1 &=& 1- \frac> \cdot 1\\
&=& \frac>\\
&=& \alpha \end $$となります。
つまり数列 $\-\beta F_n\>$ の方は初項も公比も $\alpha$ だったとわかります。よって、
$$ F_-\beta F_n = \alpha ^n \tag $$となります。

最初の2項が「1, 1」でない場合

ここまでは、フィボナッチ数列の最初の2項を「1, 1」とする最も一般的な場合のことを考えてきました。
では、最初の2項が「1, 1」ではない場合、どのような一般項になるのしょうか。

前の2項を足すと次の項」というルールは変えません。

漸化式の特性方程式の2解
$$\alpha=\frac> , \ \beta=\frac>$$を用いて漸化式を変形すると、
$$ \begin F_-\alpha F_ フィボナッチ数列 (読み)ふぃぼなっちすうれつ &=& \beta (F_-\alpha F_n) \tag \\ F_-\beta F_ &=& \alpha (F_-\beta F_n) \tag \end $$となる所までは先ほどと同じです。
ここから最初の2項を変えた影響が出てきます。

式(6)の数列 $\-\alpha F_n\>$ フィボナッチ数列 (読み)ふぃぼなっちすうれつ は公比 $\beta$ の等比数列です。
初項は、
$$ F_2-\alpha F_1=b-\alpha a $$となります。よって、
$$ F_-\alpha F_n = ( b-\alpha a )\beta^ \tag $$となることがわかります。
同様に、式(7)からは
$$ F_-\beta F_n = ( b-\beta a )\alpha^ \tag $$という関係が得られます。
式(9)-式(8)を計算すると
$$(\alpha-\beta)F_n=( b-\beta a )\alpha^-( b-\alpha a )\beta^$$となります。
この両辺を $\alpha-\beta$ で除すと、

厳選!フィボナッチ・フルコース~フィボナッチ数のマニアックな世界へ~

ただし、\(F_1=F_2=1\)とします。これは漸化式といって、前の番号の数の情報によって新たな数が構成されていく仕組みになっています。こうして得られる数列をフィボナッチ数列、そしてフィボナッチ数列に現れる数をフィボナッチ数と呼びます。
フィボナッチ数は前2つの数を足すことによって構成していきます。例えば、1番目と2番目は\(1\)であることから3番目は\(1+1=2\)。4番目は\(1+2=3\)、5番目は\(フィボナッチ数列 (読み)ふぃぼなっちすうれつ 2+3=5\)となります。最初のいくつかのフィボナッチ数を求めてみましょう。

2.フィボナッチ・フルコース

①.フィボナッチ数の整除性(オードブル)

\(p\) を\(5\)で割って\(1\)または\(4\)余る素数とする(たとえば\(11\), \(19\)など)。このとき\(p-1\)離れたフィボナッチ数たちの差は必ず\(p\)の倍数になる。つまり、以下が成り立つ。

これは中々エキゾチック。ちょっと確かめてみましょう!
\(p=11\) とします。適当に8番目のフィボナッチ数\(F_8=21\)をとってきましょう。定理によると\(フィボナッチ数列 (読み)ふぃぼなっちすうれつ p-1=10\)個進んだ18番目のフィボナッチ数\(F_\)を見てみます。すると\(フィボナッチ数列 (読み)ふぃぼなっちすうれつ F_=2584\)。結構大きい数になりますね。果たして差は\(11\)の倍数になるのでしょうか?さっそく計算してみましょう。

$$F_-F_9=4181-34=4147=11 \times 377$$

②.Lameの定理(スープ)

なんと、Euclidの互除法の回数は\(5n\)回で評価できるのです。しかも、隣り合うフィボナッチ数のペアの場合、最も作業回数が多い(めんどくさい)とのこと!
例えば、\(144\)と\(89\)のペアを考えて互除法を行いましょう。このとき小さい方の\(89\)の桁は\(2\)桁なので、定理によると\(5\times 2=10\)回も互除法を行わなければならないようです。実際に

関連記事

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

コメント

コメントする

目次
閉じる